3.542 \(\int \frac{\cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=243 \[ \frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac{2 a \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{2 \left (a^2+3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

[Out]

(-2*(a^2 + 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b*(a^2 - b^2)^2*d*Sqrt[(a
 + b*Cos[c + d*x])/(a + b)]) + (2*a*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/
(3*b*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2))
 + (2*(a^2 + 3*b^2)*Sin[c + d*x])/(3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.271597, antiderivative size = 243, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2754, 2752, 2663, 2661, 2655, 2653} \[ \frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}+\frac{2 a \sin (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac{2 a \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}-\frac{2 \left (a^2+3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(a^2 + 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b*(a^2 - b^2)^2*d*Sqrt[(a
 + b*Cos[c + d*x])/(a + b)]) + (2*a*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/
(3*b*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2))
 + (2*(a^2 + 3*b^2)*Sin[c + d*x])/(3*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{2 \int \frac{\frac{3 b}{2}-\frac{1}{2} a \cos (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{4 \int \frac{-a b-\frac{1}{4} \left (a^2+3 b^2\right ) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{a \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )}-\frac{\left (a^2+3 b^2\right ) \int \sqrt{a+b \cos (c+d x)} \, dx}{3 b \left (a^2-b^2\right )^2}\\ &=\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}-\frac{\left (\left (a^2+3 b^2\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{3 b \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (a \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{3 b \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{2 \left (a^2+3 b^2\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b \left (a^2-b^2\right )^2 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 a \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}+\frac{2 a \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac{2 \left (a^2+3 b^2\right ) \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.944148, size = 154, normalized size = 0.63 \[ \frac{2 \left (\frac{\sin (c+d x) \left (b \left (a^2+3 b^2\right ) \cos (c+d x)+2 a \left (a^2+b^2\right )\right )}{\left (a^2-b^2\right )^2}-\frac{\left (\frac{a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (\left (a^2+3 b^2\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+a (b-a) F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )\right )}{b (a-b)^2}\right )}{3 d (a+b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(-((((a + b*Cos[c + d*x])/(a + b))^(3/2)*((a^2 + 3*b^2)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] + a*(-a + b)*
EllipticF[(c + d*x)/2, (2*b)/(a + b)]))/((a - b)^2*b)) + ((2*a*(a^2 + b^2) + b*(a^2 + 3*b^2)*Cos[c + d*x])*Sin
[c + d*x])/(a^2 - b^2)^2))/(3*d*(a + b*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 10.819, size = 742, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/b/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+1/2*c
)^2*b+a+b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b
/(a-b))^(1/2))*b+2*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)-2*a/b*(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*
b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2+1/2*(a-b)/b)^2+8/3*b*sin(1/2*d*
x+1/2*c)^2/(a-b)^2/(a+b)^2*cos(1/2*d*x+1/2*c)*a/(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+
(3*a-b)/(3*a^3+3*a^2*b-3*a*b^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2
)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)
)-4/3*a/(a-b)/(a+b)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*
d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )}{b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x
+ c) + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)/(b*cos(d*x + c) + a)^(5/2), x)